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JOC Cockpit

▪ JOC Cockpit is operated

as a passive cluster and 

serves the User Interface 

and REST Web Service

▪ JOC Cockpit Services 

make use of a database

for restart capabilities

Controller / Agents

▪ The Controller is operated

as a passive cluster to

orchestrate Agents

▪ Agents receive workflow

configurations from a 

Controller, execute jobs

autonomously and report

back execution results

▪ Agents are operated as a 

cluster or standalone

Connections

▪ Communication between

components within the

scope of the indicated

network connections
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Workflows

Workflows with JOC Cockpit, Controller, Agents

JOC Cockpit / Web Service

▪ JOC Cockpit manages the

job inventory, workflows and 

the daily plan that are

forwarded to a Controller

▪ During workflow execution

JOC Cockpit receives job

log output and order state

events in near real-time

Controller

▪ The Active Controller checks

and forwards the daily plan, 

and workflow configuration

to connected Agents

Agent

▪ Agents are used to execute

workflows and jobs:

▪ any job in a workflow can

be executed with any

connected Agent

▪ Agents execute workflows

autonomously within the

scope of the daily plan

▪ Agents report back to the

Controller any log output

and any events, e.g. star-

ting or completing a task
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Orders

Orders with JOC Cockpit, Controller, Agents

JOC Cockpit / Web Service

▪ JOC Cockpit manages daily

plan orders and temporary

ad hoc orders

▪ Orders are submitted to a 

Controller for workflow

execution with Agents

Controller

▪ The Active Controller 

forwards daily plan orders

and ad hoc orders to

connected Agents

Agent

▪ Agents execute jobs in a 

workflow autonomously

triggered by orders

▪ Agents report back the

resulting order state

transition events and log 

output events

▪ Agents watch directories for

incoming files and create

file orders

▪ Agents handle in parallel 

any number of orders for

the same workflow or for

different workflows
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▪ file watching for directories

▪ add file orders to workflows
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Controller Cluster using JOC Cockpit as Cluster Watch

Controller Cluster Management

Communication

▪ Both Active/Standby Controller 

instances establish HTTP(S) 

connections to each other

Coupling

▪ The Active Controller adds

changes to objects and order

state transitions to its journal

and forwards them to the

Standby Controller instance

▪ The Standby Controller adds

such information to its journal

and acknowledges receipt

▪ When Active and Standby 

Controller instances are in 

sync then the Cluster is

considered being coupled

▪ Recoupling occurs as needed

Fail-over

▪ In case of failure of a Cont-

roller instance or connection

the Cluster Watch is consulted

to determine which Controller 

instance should take over the

active role

▪ Fail-over occurs within 15s
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Controller Cluster using an Agent as Cluster Watch

Controller Cluster Management

Communication

▪ Both Active/Standby Controller 

instances establish HTTP(S) 

connections to each other

Coupling

▪ The Active Controller adds

changes to objects and order

state transitions to its journal

and forwards them to the

Standby Controller instance

▪ The Standby Controller adds

such information to its journal

and acknowledges receipt

▪ When Active and Standby 

Controller instances are in 

sync then the Cluster is

considered being coupled

▪ Recoupling occurs as needed

Fail-over

▪ In case of failure of a Cont-

roller instance or connection

the Cluster Watch Agent is

consulted to determine which

Controller instance should

take over the active role

▪ Fail-over occurs within 15s
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Controller Integration

Controller Integration with JOC Cockpit

Journal

▪ The Journal holds objects,  

order state transition events

and log events of a Controller

▪ Such objects are synchronized

with the Standby instance

History Service

▪ The History Service subscribes

to events of the Controller

▪ Having received events and 

having stored them to the

database the service forwards

events to the GUI and instructs

the Controller to release events

Controller

▪ Events are originally stored to

the Journal after receipt from

an Agent or originating from

workflow instructions

▪ Events are removed from the

Journal when released by the

Controller

▪ Journal size can grow with the

number of objects and orders

but will shrink when orders are

completed
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Controller / Agent

Controller / Agent Communication

Controller

▪ The Controller instances

store workflow configura-

tions and order state

transitions in their journals

for synchronization

▪ These objects are passed

asynchronously to Agents

Agent

▪ Agents receive objects and 

store them in a journal

▪ Agents execute jobs inde-

pendently from an active

connection to a Controller

▪ Agents report back the

resulting order state events

and log events, e.g. after 

job completion

Communication

▪ If Controller, Agent or the

connection between them

fail then they will reconnect

▪ Communication recovers in 

case of longer outages for

hours and days
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▪ Cluster Service instances

are synchronized by use

of the database to which

they send heartbeats and 

check availability of each

other instance

▪ In case of failure one of

the remaining instances

will perform a cluster fail-

over operation

▪ Users can perform a 

switch-over operation by

selecting the next active

JOC Cockpit instance

▪ In case of switch-over the

Cluster Service will stop

any running Background 

Services normally

▪ For fail-over / switch-over

the Background Services 

are started from the

Cluster Service of the next

active JOC Cockpit 

instance

JOC Cockpit Cluster fail-over and switch-over

JOC Cockpit Cluster

Database
Service

Cluster

Service

Cluster

Service
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Service

Fail-over / Switch-over Fail-over / Switch-over
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Standby
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JOC Cockpit
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▪ JOC Cockpit application

is operated in a servlet

container

▪ Frontend User Interface 

for browser access

▪ Backend Web Services

provide information to the

GUI frontend

▪ The Cluster Service 

manages a number of

Background Services for

housekeeping, history and 

daily plan management

▪ Communication between

Backend Web Services 

and Background Services 

is based on an Event Bus

▪ The Proxy Service reports

order state transitions

occurring in a Controller 

or Agent

▪ Any JOC Cockpit service

can access the database

service to store and to

retrieve information

JOC Cockpit Frontend/Backend Services, Background Services, Event Bus and Proxy
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▪ The Cluster Service 

manages Background 

Services running in the

servlet container

▪ Background Services are

started, stopped etc.

▪ Cluster Service manages

fail-over to the next JOC 

Cockpit instance in case

of service failure

▪ Monitor Service notifies

about failed jobs and 

component failures etc.

▪ Restart Service reruns

pending deployments and 

performs synchronization

with a Controller

▪ Cleanup Service purges

the database, e.g. to limit

the size of the history

▪ History Service retrieves

execution results and logs 

from a Controller instance

▪ Daily Plan Service creates

and submits orders to

connected Controllers

JOC Cockpit clustered Background Services

JOC Cockpit Background Services14
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▪ The Proxy connects to the

active Controller, supports

fail-over and manages

asynchronous messages

▪ The Proxy deploys confi-

guration objects, submits

orders to the Controller

▪ The Proxy handles

asynchronous operations

such as cancel, suspend, 

resume etc. for orders

with the Controller

▪ The Proxy returns the

order state and deploy-

ment status of objects

▪ The Proxy forwards

asynchronous events

including order state

transitions and log output

of jobs from the Controller

▪ Information returned or

forwarded by the Proxy is

added to the Event Bus

JOC Cockpit Proxy Service

JOC Cockpit Proxy Service15
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Manage:
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▪ deploy workflow configuration

Control:
▪ connect to Active Controller
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Forward:
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▪ order state information
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