
JS7 JobScheduler

JS7 JobScheduler Architecture

Implementation Architecture:

Components & Services

▪ Workflows and Orders
▪ Basic System Architecture

▪ Workflows

▪ Orders

▪ Controller and Agent Implementation Architecture
▪ Controller Cluster

▪ Controller Journal

▪ Controller / Agent

▪ JOC Cockpit Implementation Architecture
▪ JOC Cockpit Cluster

▪ JOC Cockpit Services

▪ JOC Cockpit Background Services

▪ JOC Cockpit Proxy Service

JS7 JobScheduler

2

JOC Cockpit

▪ JOC Cockpit is operated

as a passive cluster and

serves the User Interface

and REST Web Service

▪ JOC Cockpit Services

make use of a database

for restart capabilities

Controller / Agents

▪ The Controller is operated

as a passive cluster to

orchestrate Agents

▪ Agents receive workflow

configurations from a

Controller, execute jobs

autonomously and report

back execution results

▪ Agents are operated as a

cluster or standalone

Connections

▪ Communication between

components within the

scope of the indicated

network connections

Basic System Architecture

System Architecture

Database
Service

Active

JOC Cockpit

Primary JOC Cockpit Server

Standalone

Agent

Application ServerApplication Server

Secondary Controller Server

Standby

Controller

Standby

JOC Cockpit

Secondary JOC Cockpit Server

Active

Controller

Primary Controller Server

Application Server

Standalone

Agent
Cluster

Agent

Cluster

Agent

Workflows

Workflows with JOC Cockpit, Controller, Agents

JOC Cockpit / Web Service

▪ JOC Cockpit manages the

job inventory, workflows and

the daily plan that are

forwarded to a Controller

▪ During workflow execution

JOC Cockpit receives job

log output and order state

events in near real-time

Controller

▪ The Active Controller checks

and forwards the daily plan,

and workflow configuration

to connected Agents

Agent

▪ Agents are used to execute

workflows and jobs:

▪ any job in a workflow can

be executed with any

connected Agent

▪ Agents execute workflows

autonomously within the

scope of the daily plan

▪ Agents report back to the

Controller any log output

and any events, e.g. star-

ting or completing a task

4

Active

Controller

store history, logs

Active

Agent

Active

Agent

Agents

JOC Cockpit

User Interface

Journal

Forward:
▪ daily plan orders
▪ workflow configuration

Forward:
▪ order state events
▪ job log events

JournalJournal

Controller

JOC Cockpit

report events

Apply:

▪ daily plan orders

▪ workflow configuration

JOC Cockpit

Web Service

Controller Proxy
Service

Report:
▪ order state events
▪ job log events

Forward:
▪ daily plan orders
▪ workflow configuration

Database
Service

Manage:
▪ daily plan orders
▪ workflow configuration

Report Back:

▪ order state events
▪ job log events

Orders

Orders with JOC Cockpit, Controller, Agents

JOC Cockpit / Web Service

▪ JOC Cockpit manages daily

plan orders and temporary

ad hoc orders

▪ Orders are submitted to a

Controller for workflow

execution with Agents

Controller

▪ The Active Controller

forwards daily plan orders

and ad hoc orders to

connected Agents

Agent

▪ Agents execute jobs in a

workflow autonomously

triggered by orders

▪ Agents report back the

resulting order state

transition events and log

output events

▪ Agents watch directories for

incoming files and create

file orders

▪ Agents handle in parallel

any number of orders for

the same workflow or for

different workflows

5

Active

Controller

store history, logs

Active

Agent

Active

Agent

Agents

JOC Cockpit

User Interface

Journal

Forward:
▪ daily plan orders, ad hoc orders
▪ cancel, suspend, resume orders

Forward:
▪ order state events
▪ job log events

JournalJournal

Controller

JOC Cockpit

report events

Apply:

▪ daily plan orders, ad hoc orders

▪ cancel, suspend, resume orders

JOC Cockpit

Web Service

Controller Proxy
Service

Report:
▪ order state events
▪ job log events

Forward:
▪ daily plan orders, ad hoc orders
▪ cancel, suspend, resume orders

Database
Service

Manage:
▪ daily plan orders
▪ ad hoc orders

Report Back:

▪ order state events

▪ job log events
▪ file orders

File Watching

Perform:

▪ file watching for directories

▪ add file orders to workflows

▪ Workflows and Orders
▪ Basic System Architecture

▪ Workflows

▪ Orders

▪ Controller and Agent Implementation Architecture
▪ Controller Cluster

▪ Controller Journal

▪ Controller / Agent

▪ JOC Cockpit Implementation Architecture
▪ JOC Cockpit Cluster

▪ JOC Cockpit Services

▪ JOC Cockpit Background Services

▪ JOC Cockpit Proxy Service

JS7 JobScheduler

6

Controller Cluster using JOC Cockpit as Cluster Watch

Controller Cluster Management

Communication

▪ Both Active/Standby Controller

instances establish HTTP(S)

connections to each other

Coupling

▪ The Active Controller adds

changes to objects and order

state transitions to its journal

and forwards them to the

Standby Controller instance

▪ The Standby Controller adds

such information to its journal

and acknowledges receipt

▪ When Active and Standby

Controller instances are in

sync then the Cluster is

considered being coupled

▪ Recoupling occurs as needed

Fail-over

▪ In case of failure of a Cont-

roller instance or connection

the Cluster Watch is consulted

to determine which Controller

instance should take over the

active role

▪ Fail-over occurs within 15s

7

JOC Cockpit

Active

Cluster Watch

JOC Cockpit

Standby

Cluster Watch

JOC Cockpit

JOC Cockpit

Standby

Cluster Watch

Active

ControllerJournal

Controller

Standby

Controller Journal

2) acknowledge

1) forward

store storeCluster

Coupled

▪ JOC Cockpit acts as
Cluster Watch:

▪ Automated fail-over
between instances

Controller Cluster using an Agent as Cluster Watch

Controller Cluster Management

Communication

▪ Both Active/Standby Controller

instances establish HTTP(S)

connections to each other

Coupling

▪ The Active Controller adds

changes to objects and order

state transitions to its journal

and forwards them to the

Standby Controller instance

▪ The Standby Controller adds

such information to its journal

and acknowledges receipt

▪ When Active and Standby

Controller instances are in

sync then the Cluster is

considered being coupled

▪ Recoupling occurs as needed

Fail-over

▪ In case of failure of a Cont-

roller instance or connection

the Cluster Watch Agent is

consulted to determine which

Controller instance should

take over the active role

▪ Fail-over occurs within 15s

8

Active

Controller

Cluster Watch

Agent

Active

Agent

Agents

Journal

JournalJournal

Controller

Standby

Controller Journal

2) acknowledge

1) forward

store storeCluster

Coupled

Active

Agent

Journal

▪ Single Agent acts as
Cluster Watch

▪ No automated fail-over
between instances

Controller Integration

Controller Integration with JOC Cockpit

Journal

▪ The Journal holds objects,

order state transition events

and log events of a Controller

▪ Such objects are synchronized

with the Standby instance

History Service

▪ The History Service subscribes

to events of the Controller

▪ Having received events and

having stored them to the

database the service forwards

events to the GUI and instructs

the Controller to release events

Controller

▪ Events are originally stored to

the Journal after receipt from

an Agent or originating from

workflow instructions

▪ Events are removed from the

Journal when released by the

Controller

▪ Journal size can grow with the

number of objects and orders

but will shrink when orders are

completed

9

Active

ControllerJournal

Controller

Standby

Controller Journal

1) store 1) store

1) store history, logs

JOC Cockpit

User Interface

JOC Cockpit

JOC Cockpit

Web Service

Controller Proxy
Service

Database
Service

History

Service

2) remove 2) remove

forward

acknowledge

1) receive events

2) release events

Event Bus
Service

Cluster

Coupled

Controller / Agent

Controller / Agent Communication

Controller

▪ The Controller instances

store workflow configura-

tions and order state

transitions in their journals

for synchronization

▪ These objects are passed

asynchronously to Agents

Agent

▪ Agents receive objects and

store them in a journal

▪ Agents execute jobs inde-

pendently from an active

connection to a Controller

▪ Agents report back the

resulting order state events

and log events, e.g. after

job completion

Communication

▪ If Controller, Agent or the

connection between them

fail then they will reconnect

▪ Communication recovers in

case of longer outages for

hours and days

10

Active

Agent

Active

Agent

Agents

JournalJournal

Active

ControllerJournal
Standby

Controller Journal

store storesynchronize

store

Controller

1) forward 2) report back

▪ Workflows and Orders
▪ Basic System Architecture

▪ Workflows

▪ Orders

▪ Controller and Agent Implementation Architecture
▪ Controller Cluster

▪ Controller Journal

▪ Controller / Agent

▪ JOC Cockpit Implementation Architecture
▪ JOC Cockpit Cluster

▪ JOC Cockpit Services

▪ JOC Cockpit Background Services

▪ JOC Cockpit Proxy Service

JS7 JobScheduler

11

▪ Cluster Service instances

are synchronized by use

of the database to which

they send heartbeats and

check availability of each

other instance

▪ In case of failure one of

the remaining instances

will perform a cluster fail-

over operation

▪ Users can perform a

switch-over operation by

selecting the next active

JOC Cockpit instance

▪ In case of switch-over the

Cluster Service will stop

any running Background

Services normally

▪ For fail-over / switch-over

the Background Services

are started from the

Cluster Service of the next

active JOC Cockpit

instance

JOC Cockpit Cluster fail-over and switch-over

JOC Cockpit Cluster

Database
Service

Cluster

Service

Cluster

Service
Cluster

Service

Fail-over / Switch-over Fail-over / Switch-over

Active

JOC Cockpit

JOC Cockpit

Standby

JOC Cockpit

Standby

JOC Cockpit

12

▪ JOC Cockpit application

is operated in a servlet

container

▪ Frontend User Interface

for browser access

▪ Backend Web Services

provide information to the

GUI frontend

▪ The Cluster Service

manages a number of

Background Services for

housekeeping, history and

daily plan management

▪ Communication between

Backend Web Services

and Background Services

is based on an Event Bus

▪ The Proxy Service reports

order state transitions

occurring in a Controller

or Agent

▪ Any JOC Cockpit service

can access the database

service to store and to

retrieve information

JOC Cockpit Frontend/Backend Services, Background Services, Event Bus and Proxy

JOC Cockpit Services13

Database
Service

Frontend

User Interface

Servlet Container

Secondary Controller Server

Standby

Controller

Proxy
Service

Restart

Service

JOC Cockpit Application

Monitor

Service

Daily Plan

Service

Cluster

Service

Backend

Web Services

Event Bus
Service

Primary Controller Server

Active

Controller

Cleanup

Service
History

Service

▪ The Cluster Service

manages Background

Services running in the

servlet container

▪ Background Services are

started, stopped etc.

▪ Cluster Service manages

fail-over to the next JOC

Cockpit instance in case

of service failure

▪ Monitor Service notifies

about failed jobs and

component failures etc.

▪ Restart Service reruns

pending deployments and

performs synchronization

with a Controller

▪ Cleanup Service purges

the database, e.g. to limit

the size of the history

▪ History Service retrieves

execution results and logs

from a Controller instance

▪ Daily Plan Service creates

and submits orders to

connected Controllers

JOC Cockpit clustered Background Services

JOC Cockpit Background Services14

Database
Service

Active JOC Cockpit

Restart

Service
Monitor

Service

Daily Plan

Service

Cluster

Service

Start/Stop/Status Start/Stop/Status

Cleanup

Service

Standby JOC Cockpit

Restart

Service
Monitor

Service

Daily Plan

Service

Cluster

Service

Start/Stop/Status Start/Stop/Status

Cleanup

Service

History

Service

History

Service

▪ The Proxy connects to the

active Controller, supports

fail-over and manages

asynchronous messages

▪ The Proxy deploys confi-

guration objects, submits

orders to the Controller

▪ The Proxy handles

asynchronous operations

such as cancel, suspend,

resume etc. for orders

with the Controller

▪ The Proxy returns the

order state and deploy-

ment status of objects

▪ The Proxy forwards

asynchronous events

including order state

transitions and log output

of jobs from the Controller

▪ Information returned or

forwarded by the Proxy is

added to the Event Bus

JOC Cockpit Proxy Service

JOC Cockpit Proxy Service15

Database
Service

JOC Cockpit Application

Secondary Controller Server

Standby

Controller

Proxy
Service

Background

Services

Backend

Web Services

Event Bus
Service

Primary Controller Server

Active

Controller

Manage:
▪ submit daily plan orders
▪ deploy workflow configuration

Control:
▪ connect to Active Controller
▪ cancel, suspend, resume orders

Forward:
▪ events
▪ job logs

Return:
▪ order state information
▪ deployment status information

JS7 JobScheduler

16

Software- und

Organisations-

Service GmbH

Giesebrechtstr. 15

D-10629 Berlin

info@sos-berlin.com

https://www.sos-berlin.com

Questions?

Comments?

Feedback?

	Folie 1: JS7 JobScheduler
	Folie 2: JS7 JobScheduler
	Folie 3: Basic System Architecture
	Folie 4: Workflows
	Folie 5: Orders
	Folie 6: JS7 JobScheduler
	Folie 7: Controller Cluster using JOC Cockpit as Cluster Watch
	Folie 8: Controller Cluster using an Agent as Cluster Watch
	Folie 9: Controller Integration
	Folie 10: Controller / Agent
	Folie 11: JS7 JobScheduler
	Folie 12: JOC Cockpit Cluster fail-over and switch-over
	Folie 13: JOC Cockpit Frontend/Backend Services, Background Services, Event Bus and Proxy
	Folie 14: JOC Cockpit clustered Background Services
	Folie 15: JOC Cockpit Proxy Service
	Folie 16: JS7 JobScheduler

